

Abstract

Deep Neural Image recolorization and palette-

swapping is an image/style transfer technique that is

especially useful for improving image quality, vintage

photo/video restoration, generating new images with

different moods or styles, and enhancing the visual appeal

of images for artistic or commercial purposes. As such, it

has incredible potential for use in creative domains. In this

paper, I propose a modified version of PaletteNet, an

existing recolorization model, that is expressly designed

and trained for artistic use on a dataset consisting of fine

art from 10 distinct styles, and only accepts 4 colors from

the user as its palette to create reductive images. I compare

the model to a more naïve color transfer algorithm, as well

as examine how ablation, heavy hyperparameter tuning

and general training mistakes can still lead to a model that

has artistic merit and maintains semantic integrity. All

code is available on the GitLab link below.

https://github.com/KirkFord/CMPT-489-Project

1. Introduction

Creative industries and artists of all kinds play a

significant role in today's society, impacting both the

economy and culture at large. A major focus within these

industries is the production, consumption, control, and

assessment of visual content. With recent advancements

in technology, there has been a surge of research in

utilizing deep learning and computer vision techniques in

various aspects of these creative fields. Art is routed in

human creativity, and although certain creative processes

cannot be accelerated, menial and/or time-consuming

tasks that surround these processes can call upon deep

learning algorithms to speed up or even revolutionize the

overall production and acquisition of art. Recolorization

aims to facilitate the issues involved with manually

recoloring an image with a new color palette by using

deep learning to automatically transfer given colors onto

an image while preserving the images’ original style.

There is, however, several challenges within this field,

including but not limited to:

1. Color Ambiguity: The mapping between the

original colors and the target colors is often

ambiguous, and multiple solutions can exist for a

single image.

2. Semantic Preservation: It is important to

preserve the semantic content of the image, such

as the objects, scenes, and shapes, while

changing the colors.

3. Color Consistency: The recolored image should

be visually coherent and consistent, with colors

that are realistic and blend well with each other.

4. Stylistic Preservation: The image should retain

the original style and artistic qualities, such as

texture, tone, and contrast.

5. Scalability: The recoloring process should work

well for a wide variety of images and color

schemes and be able to handle large amounts of

data.

For the sake of this project, I will not be doing any

colorization (where a greyscale image is given as input

and a deep learning model discerns the colours of the

image, used in image restoration), rather the end-user will

supply an input image and a color palette that they wish to

translate the input images’ contents into, resulting in the

output image. This task is an image-to-image translation

problem with elements of color classification, which in an

ideal scenario could be applied to any image to produce a

new image with a palette of the users choosing. This task

is transferrable to any photographic subject since any

image could be used as by an artist for their projects, and

as such, I am using the ArtBench-10 dataset, which has

been created with PyTorch use in mind. The

aforementioned challenges of this task are loose metrics

for how well my deep learning model. Thus, the models I

chose required proper color extraction, semantic

segmentation, and recoloring capabilities. For my main

model, I am using PaletteNet, a machine learning model

that can automatically recolor images with a specified

color palette and is closely related to my project [1]. It

presents a deep neural network architecture that can be

trained to predict new colors for an image based on a

given color palette. The model can learn to generate

plausible and consistent color modifications. The authors

claim that the model can be applied to various creative

Course Project Final Report

Kirk Ford

University of Saskatchewan

Saskatoon, Saskatchewan
kwf014@usask.ca

domains such as graphic design, photography, and

fashion. In these areas, the ability to automatically recolor

images with a specific color palette can be used to

generate new variations of an image or explore different

color options. My baseline model is the photo recoloring

optimization network [2] – which is a much simpler, non-

deep learning algorithm primarily implemented in 2 parts:

palette calculation, which divides the color space of the

photo evenly and then applies a k-means clustering

algorithm to determine the k-most used colors in the

palette, and recoloring, which changes the colors of the

calculated palette via individual LAB channel

transformations and translations. Like PaletteNet, it is

also designed to transform the palette of an input image

into a new palette of the user’s choice.

2. Methods

The dataset I have chosen to use for this task is Artbench-

10, a large-scale benchmark dataset for fine-grained art

classification tasks. The dataset comprises 60,000 images

of artwork from 10 different artistic styles, with 5,000

training images and 1,000 testing images per style. One of

the key benefits of ArtBench-10 is its class-balanced

distribution, which addresses the long-tail class

distributions commonly found in previous artwork

datasets. Each sample in the Artbench-10 dataset is an

image of a fine art piece. The dataset offers images of

high quality with clean annotations and is provided in

three versions with different resolutions (32 x 32, 256 x

256, and original image size), formatted to be easily

incorporated by popular machine learning frameworks.

The images are in JPEG format, and each sample is

associated with a set of labels given in a .csv metadata

file, including the artist’s name, title, year of creation (if

available), and art movement. An example of this

image/label annotation is as such:

Image: "The Persistence of Time"

Art style: Surrealism

Artist: Joseph Cusimano

Year: 1963

2.1. Input Visualization

The version of Artbench-10 that I have selected has

normalized all image dimensions to 256 x 256 pixels as

well as standardized the bit depth to 24. However, the

dataset does not contain duplicate photos with different

colour palettes, which poses a fundamental problem: how

will the model be trained to apply different colour palettes

onto images without a training reference set of 2

differently coloured images? Luckily, this problem was

answered by the researchers and creators of PaletteNet:

Image Recolorization with Given Color Palette [1], which

I have been using as the basis for my model. They

proposed that to train PaletteNet to transform a source

image into a desired target image, it is necessary to have a

corresponding target ground truth image that is a

differently colored version of the source image. However,

in most cases, such an image does not exist. This is where

color augmentation becomes crucial, as it allows us to

define both the input and output of the network. Color

augmentation involves modifying the pixel values of an

image in a particular color space, such as HSV, RGB, or

LAB, on a channel-by-channel basis. PaletteNet primarily

uses hue-shift in the HSV color space, although this

method can cause luminance distortion.

Because HSV does not distinguish between luminance

and color characteristics, naive hue-shifting can lead to

unwanted luminance distortion. To overcome this, the

PaletteNet researchers have proposed a hue-shift

algorithm that maintains the original image's luminance

during color augmentation.

From PaletteNet: Image Recolorization with Given Color

Palette [1].

 This technique successfully alters the color concept of

the image while minimizing luminance distortion. Fixing

luminance is important because the goal is to change only

the color concept of the image, not its overall brightness.

The Assumption is made that the corresponding palette of

the hue-shifted image is also hue-shifted by the same

amount as that of the original image.

I use this luminance-correcting hue-shift method to

generate ground truth images, as it allows me to generate

a fully specialized dataset for my task out of any pre-

existing dataset. Below is a comparison of a ground truth

image/palette vs. the same ground truth image/palette

with its luminance corrected. Luminance distortion can

severely disrupt the color balance of hue-shifted photos

with high saturation, brightness and/or exposure if not

properly accounted for.

2.2. Main Model Description

The main model I am using is that of “PaletteNet:

Image Recolorization with Given Color Palette” [1]. The

model architecture is based on a modified U-Net, a type

of convolutional neural network commonly used for

image segmentation and image-to-image translation tasks.

The model consists of an encoder and a decoder, with

skip connections between corresponding encoder and

decoder layers to enable the model to preserve fine details

during the recolorization process. Afterwards, the model

is put through an adversarial neural network discriminator

that assigns image-pixel/palette pairs as either fake (not

related to the input-palette) or real (related to the input

palette) to further help the model distinguish luminance

and semantics within an image. The authors also

introduce a loss function that combines both perceptual

and color similarity measures to improve the quality of

the recolorized images and demonstrate that their model

outperforms several state-of-the-art image recolorization

methods in terms of both visual quality and color fidelity.

The proposed framework for “PaletteNet: PaletteNet:

Image Recolorization with Given Color Palette” [1].

The PaletteNet model proposed in the paper

"PaletteNet: Image Recolorization with Given Color

Palette" has several hyperparameters that can affect its

performance. Here are some of the main/relevant

hyperparameters of the model:

1. Learning rate: The learning rate determines the

step size taken during gradient descent

optimization. A higher learning rate can result in

faster convergence but may also cause the

optimization to oscillate or diverge. The authors

of PaletteNet used an initial learning rate of

0.0002.

2. Batch size: The batch size determines the

number of samples used in each iteration of

gradient descent. A larger batch size can result in

faster convergence but may also require more

memory and slow down the training process. The

authors of PaletteNet used a batch size between 8

and 12 depending on the GPU.

3. Number of epochs: The number of epochs

determines the number of times the entire

training dataset is passed through the model

during training. Increasing the number of epochs

can improve the model's performance but may

also lead to overfitting. The authors of PaletteNet

trained their model for 1000 epochs.

4. Number of filters: The number of filters

determines the depth of the model and can affect

its ability to capture complex features. The

authors of PaletteNet used a modified U-Net

architecture with 64 filters in the first layer of the

encoder and decoder, and gradually increasing

the number of filters in subsequent layers.

5. Loss function weights: As previously mentioned,

the authors of PaletteNet used a novel loss

function that combines both perceptual and color

similarity measures. The weights assigned to

each component of the loss function can affect

the balance between preserving fine details and

ensuring accurate color representation in the

recolorized images.

6. Data augmentation: Data augmentation

techniques such as random cropping, flipping,

and rotation can help to increase the size of the

training dataset and improve the model's ability

to generalize to new images. The authors of

PaletteNet used random horizontal flipping as a

data augmentation technique.

These hyperparameters were chosen based on empirical

experimentation and can be adjusted. As such, I have

changed the way colours are extracted from images,

opting into a KNN approach as described in my dataset

plan. I decreased the number of colours in an input palette

from 6 to 4, being able to experiment with

increasing/decreasing the batch size to maximum 32 and

minimum 8.

2.3. Baseline Model Description

 For my baseline model, I am using the approach

presented in the paper "palette-based photo recoloring" by

Huiwen Chang et al [2]. The authors propose a technique

that takes as input an image and a user-defined color

palette and generates a new image where the colors have

been replaced with colors from the given palette while

preserving the overall appearance of the original image.

The method is based on an optimization framework that

iteratively updates the colors of the pixels in the image to

minimize a cost function that measures the difference

between the new color and the original color.

The authors evaluate their method on a dataset of

images and show that it is able to produce visually

pleasing results that are consistent with the user-provided

color palette. They also compare their method with other

standard recoloring techniques and show that it exceeds

them in terms of both quality and computational

efficiency.

These images were taken from the palette-based photo

recoloring GitHub page: (https://github.com/b-

z/photo_recoloring).

This model does not have any explicit elements of

machine learning within its implementation. The method

is based on an optimization framework where the cost

function is designed to take into account both the

perceptual similarity between the original and new colors,

as well as the overall smoothness of the recolored image.

While the method does not use any machine learning

algorithms explicitly, it does incorporate some elements

that are similar to machine learning techniques. For

example, the method uses a color difference measure that

is based on the perceptual similarity of colors, which is

similar to the idea of using a distance metric in machine

learning. Additionally, the method uses spatial

regularization terms to encourage smoothness in the

recolored image, which is also similar to the idea of using

regularization in machine learning to avoid overfitting.

While the paper does not explicitly mention

hyperparameters, the optimization algorithm has several

parameters that can affect the performance of the method.

These parameters include:

1. The initial color palette: The user provides a set

of colors that the algorithm uses to recolor the

image. The choice of colors can greatly impact

the final result.

2. The weight of the color difference measure: The

cost function used in the optimization framework

involves a color difference measure that weighs

the difference between the original and recolored

colors. The weight of this measure can be

https://github.com/b-z/photo_recoloring
https://github.com/b-z/photo_recoloring

adjusted to control the balance between color

fidelity and color variety.

3. The weight of the spatial regularization term:

The cost function also includes a term that

encourages smoothness in the recolored image.

The weight of this term can be adjusted to

control the balance between smoothness and

detail preservation.

4. The number of iterations: The optimization

process iteratively updates the colors of the

pixels in the image to minimize the cost

function. The number of iterations can be

adjusted to control the convergence of the

optimization process and the quality of the final

result.

The specific values of these parameters may depend on

the characteristics of the input image, the chosen color

palette, and the desired level of color fidelity and

smoothness in the output image. Since I will be using this

as my baseline model, this method will serve as an overall

benchmark against a deep learning model that utilizes

semantic recognition and preservation, as well as

luminance preservation and colour diffusion techniques to

better translate the input palette onto the image in

question. I decreased the size of the input palette of this

approach from 5 to 4.

2.4. Training Plan and Evaluation Metric

For my main model, I initialized the model using the

He initialization method for the convolutional layers and

the Glorot initialization method for the fully connected

layers. The PaletteNet authors use a combination of two

regularization schemes: L2 weight regularization and

dropout, which I did not modify at this given time. The

training algorithm I will use is the Adam optimization

algorithm. The authors of PaletteNet also use a learning

rate scheduler that decreases the learning rate during

training to help the model converge more smoothly and

avoid getting stuck in local minima. Specifically, they use

a step decay scheduler that reduces the learning rate by a

factor of 10 after a certain number of epochs. This helps

to improve the stability and generalization performance of

the model.

I used a CUDA-enabled implementation of PyTorch on

an x64 Windows distribution to train this model. During

training, the model was trained on the training set and its

performance is evaluated on the self-created validation set

at the end of a 100-epoch training session. The

performance metric used for evaluation is the mean

squared error (MSE) between the predicted and ground-

truth palettes for each image in the validation set.

Since the baseline model is not a deep learning model,

there will be no training plan required for it. An

alternative evaluation metric that I am researching to

compare my baseline and main models is the Structural

Similarity Index (SSIM).

The SSIM is a widely used metric for evaluating the

similarity between two images, which takes into account

both their luminance and structural information. The

SSIM index ranges from -1 to 1, where 1 indicates perfect

similarity between the two images, 0 indicates no

similarity, and -1 indicates complete dissimilarity.

To compute the SSIM between the predicted and

ground-truth images for a given input image, the

predicted and ground-truth images are first converted

from the LAB color space to the RGB color space. Then,

the SSIM is computed over the luminance and

chrominance channels of the images.

Using the SSIM as an alternative evaluation metric in

addition to the MSE can provide a more comprehensive

evaluation of the model's performance. While the MSE

measures the pixel-wise difference between the predicted

and ground-truth color palettes, the SSIM measures the

perceptual similarity between the predicted and ground-

truth images, taking into account factors such as

brightness, contrast, and structure.

3. Results

After realizing that training my model for 1000 epochs

was somewhat overambitious, I trained the modified 4-

color model on the testing set for 100 epochs on feature

encoder/ recoloring decoder and a separate 100 epochs on

the adversarial discriminator. Overall, it took between 10-

15 minutes per epoch, resulting in an overall training

session of just under 2 days. While this was somewhat

lengthy, the average epoch time on the training set was

around 3.5 hours, and as such, I could not feasibly

complete 100 epochs on my home setup. I spent 2 days

transferring my models and dataset into tux storage, and

the GPU farm/ Blacktip netbook servers were giving me

similar times per epoch. I tried changing batch size and

learning rate, but to no avail. After I realized that the tux

netbook servers could not reasonably handle this task

either, I decided to focus my tests specifically on the test

set, and by doing so I was able to obtain some very

interesting results.

To preface, the baseline model did not need any

training, as it is not a deep learning/ machine learning

model. With my main model being a modified version of

palettenet, it required double the training time, as I needed

to train the encoder/decoder as well as adversarial neural

network/discriminator. I noticed that my total loss was

quite high while training the discriminator and would

slowly whittle down per epoch. By the time 100 epochs

were met, it still had a total loss value over 200, and

created very interesting images but was ultimately

unsuccessful at the task at hand. Continuing onward, I

realized that my ablated model which only went through

encoder/decoder training was performing quite well. This

will be later visited in the ablation study.

Overall, this main model created through the test set

creates reduced, pleasing and nearly semantically

identical photos, even with an outrageous color palette.

Because of PaletteNet’s training, it can introduce colors in

a much more subdued fashion than the naïve color

algorithm. By using a SSIM tool created by Nathancy

(more info under acknowledgements on GitLab) I was

able to quickly analyze the structure of the original photo

against the newly created photo. Using the same palette

for both models (orange, brown, purple, green), the SSIM

tool reported that the Image similarity score was

0.936519987490214 (Figure 1), which is quite good when

compared to SSIM value of the naïve algorithm, which

produced an Image similarity score of

0.48873317084460277 (Figure 2).

Figure 1: Original image vs. Main Model Image.

Figure 2: Original image vs Baseline Model Image.

3.1. Hyper Parameter Experiment

 After the initial training session, I knew I needed to

tune hyperparameters to minimize my total loss,

especially after seeing the loss on the adversarial network.

To achieve that, I modified my main model to use

TensorBoard to track scalars such as loss, as well as the

weights/biases of convolutional layers. To come up with

an optimal configuration, I changed the learning rate,

batch size, and image shuffle configurations values into

dynamic values, having 2 different learning rates (0.01,

0.0002), 2 different shuffle states (on and off) and 3

different batch sizes (8, 16, and 32), which gave me 12

different total combinations of hyper parameters. Using

my new TensorBoard setup, I ran each hyper parameter

combination for 5 epochs, and tracked the loss at the end

of each run. Figure 3 visually demonstrates all

combinations final loss after their respective runs, and

Figure 4 contains the raw data on how well each

combination of hyper parameters performed regarding

minimizing loss.

Figure 3: TensorBoard Visualization of all 12 runs total

loss. The data for these runs are available on GitLab.

Figure 4: Raw data on each hyper parameter run. lr =

0.0002, bsize = 8, shuffle = 0 had the lowest total loss.

All these hyper parameters generally affected loss rate,

with shuffle-on consistently raising the loss of its non-

shuffled counterpart, and higher batch sizes/ learning rates

generally resulting in an increased total loss value. lr =

0.0002, bsize = 8, shuffle = 0 had the lowest total loss,

and lr = 0.01, bsize = 16, shuffle = 1 had the highest total

loss. Higher batch sizes/and learning rates consistently

finished faster than lower sizes/rates but lack the fine-

grained precision that lower/sizes/rates provide to the

models weights/biases.

3.2. Ablation Study

 In the original PaletteNet paper, the training plan for

the model involved two phases: Pretraining Feature

Encoder (FE) and Recoloring Decoder (RD) with

Euclidean loss, Freezing the parameters of FE and

training RD with additional Adv-loss. This split training

stabilizes the learning of the recolorization process with

Adv-loss (Figure 5). For the ablation study, I decided to

save my model both after the encoder/decoder training

and after the adversarial training, resulting in two separate

models, one with and one without adversarial training/

concatenation.

Figure 5: the original training plan for PaletteNet Model.

 I chose to cut out all adversarial training as my ablated

model because, interestingly enough, my original model

that included the adversarial loss performed worse in

terms of adversarial total loss versus Euclidean total loss

and worse on the SSIM tests than my ablated model

which only trained 100 epochs on FE/RD. Figure 6 shows

the SSIM tests of the original image versus the adversarial

model image generation, on which it scored an image

similarity of 0.6427447836424582, much less than the

ablated model’s score of 0.936519987490214 in figure 1,

although these results were still better than that of the

photo recoloring baseline model.

Figure 6: Original image vs non-ablated model.

Originally, I was unsure if the ablated model would

perform well at all, as I initially began my image testing

with the full model, but as once I realized that the ablated

model gave better results, I switched all my testing to that

model. The main reason I believe the non-ablated model

performs worse is due to FE/RD being trained on less

data/epochs than the original PaletteNet-documented

model, thus when those weights/parameters are frozen to

train the adversarial network, it has less of a tuned model

to as its foundation, and then only gets trained for a

fraction of what the team behind PaletteNet trained their

model on.

4. Discussion

 Because this task is focused on deep learning for

creative domains, subjective measures such as image

appeal, style, and quality are just as important as objective

measures such as performance and task efficacy, which

has led to some unusual but welcome discoveries. My

fully trained adversarial model produces images that are

trying to discriminate each image-pixel/palette pair as real

or fake, which results in a sort of distortion between the

input palette and the original color palette. This was an

unintended effect, but nevertheless generates a new

stylistic rendition of an image. Had more time been put

into training both the FE/RD and the adversarial models, I

believe that this issue would have been solved, or at the

very least somewhat alleviated. Upon showing some

colleagues the faulty model, they preferred the images

that it generated over the images generated from the more

accurate ablated test model. This shows that, as with all

art, preference plays a huge role on the actual level of

appeal that an artistic product can have, and as such,

mistakes in artistic models can lead to some novel uses

and applications of deep learning models.

5. Conclusion

 In conclusion, deep neural image recolorization and

palette-swapping is a powerful technique that has

immense potential for improving image quality and

generating new images with different styles and moods.

The modified version of PaletteNet proposed in this paper

is an excellent example of the adaptability of this

technique for artistic purposes. The model successfully

created reductive images via the 4-color palette training

that maintain semantic integrity. The study compared and

demonstrated the superiority of the proposed model

against a more naïve color transfer algorithm and

demonstrated that through ablation, hyperparameter

tuning, and general training mistakes, it was still possible

to create a model with artistic worth, even if that model

does not do what it was originally intended to do.

References

[1] Cho, J., Yun, S., Lee, K., & Choi, J. (2017). PaletteNet:

Image recolorization with given color palette. 2017 IEEE
Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW).

https://doi.org/10.1109/cvprw.2017.143

[2] Chang, H., Fried, O., Liu, Y., DiVerdi, S., & Finkelstein,

A. (2015). Palette-based photo recoloring. ACM

Transactions on Graphics, 34(4), 1–11.

https://doi.org/10.1145/2766978

