
 

 

Abstract 

 

Deep Neural Image recolorization and palette-

swapping is an image/style transfer technique that is 

especially useful for improving image quality, vintage 

photo/video restoration, generating new images with 

different moods or styles, and enhancing the visual appeal 

of images for artistic or commercial purposes. As such, it 

has incredible potential for use in creative domains. In this 

paper, I propose a modified version of PaletteNet, an 

existing recolorization model, that is expressly designed 

and trained for artistic use on a dataset consisting of fine 

art from 10 distinct styles, and only accepts 4 colors from 

the user as its palette to create reductive images. I compare 

the model to a more naïve color transfer algorithm, as well 

as examine how ablation, heavy hyperparameter tuning 

and general training mistakes can still lead to a model that 

has artistic merit and maintains semantic integrity. All 

code is available on the GitLab link below. 

https://github.com/KirkFord/CMPT-489-Project 

 

1. Introduction 
 

Creative industries and artists of all kinds play a 

significant role in today's society, impacting both the 

economy and culture at large. A major focus within these 

industries is the production, consumption, control, and 

assessment of visual content. With recent advancements 

in technology, there has been a surge of research in 

utilizing deep learning and computer vision techniques in 

various aspects of these creative fields. Art is routed in 

human creativity, and although certain creative processes 

cannot be accelerated, menial and/or time-consuming 

tasks that surround these processes can call upon deep 

learning algorithms to speed up or even revolutionize the 

overall production and acquisition of art. Recolorization 

aims to facilitate the issues involved with manually 

recoloring an image with a new color palette by using 

deep learning to automatically transfer given colors onto 

an image while preserving the images’ original style. 

There is, however, several challenges within this field, 

including but not limited to: 

1. Color Ambiguity: The mapping between the 

original colors and the target colors is often 

ambiguous, and multiple solutions can exist for a 

single image. 

2. Semantic Preservation: It is important to 

preserve the semantic content of the image, such 

as the objects, scenes, and shapes, while 

changing the colors. 

3. Color Consistency: The recolored image should 

be visually coherent and consistent, with colors 

that are realistic and blend well with each other. 

4. Stylistic Preservation: The image should retain 

the original style and artistic qualities, such as 

texture, tone, and contrast. 

5. Scalability: The recoloring process should work 

well for a wide variety of images and color 

schemes and be able to handle large amounts of 

data. 

For the sake of this project, I will not be doing any 

colorization (where a greyscale image is given as input 

and a deep learning model discerns the colours of the 

image, used in image restoration), rather the end-user will 

supply an input image and a color palette that they wish to 

translate the input images’ contents into, resulting in the 

output image. This task is an image-to-image translation 

problem with elements of color classification, which in an 

ideal scenario could be applied to any image to produce a 

new image with a palette of the users choosing. This task 

is transferrable to any photographic subject since any 

image could be used as by an artist for their projects, and 

as such, I am using the ArtBench-10 dataset, which has 

been created with PyTorch use in mind. The 

aforementioned challenges of this task are loose metrics 

for how well my deep learning model. Thus, the models I 

chose required proper color extraction, semantic 

segmentation, and recoloring capabilities. For my main 

model, I am using PaletteNet, a machine learning model 

that can automatically recolor images with a specified 

color palette and is closely related to my project [1]. It 

presents a deep neural network architecture that can be 

trained to predict new colors for an image based on a 

given color palette. The model can learn to generate 

plausible and consistent color modifications. The authors 

claim that the model can be applied to various creative 
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domains such as graphic design, photography, and 

fashion. In these areas, the ability to automatically recolor 

images with a specific color palette can be used to 

generate new variations of an image or explore different 

color options. My baseline model is the photo recoloring 

optimization network [2] – which is a much simpler, non-

deep learning algorithm primarily implemented in 2 parts: 

palette calculation, which divides the color space of the 

photo evenly and then applies a k-means clustering 

algorithm to determine the k-most used colors in the 

palette, and recoloring, which changes the colors of the 

calculated palette via individual LAB channel 

transformations and translations. Like PaletteNet, it is 

also designed to transform the palette of an input image 

into a new palette of the user’s choice. 

 

2. Methods 

 
The dataset I have chosen to use for this task is Artbench-

10, a large-scale benchmark dataset for fine-grained art 

classification tasks. The dataset comprises 60,000 images 

of artwork from 10 different artistic styles, with 5,000 

training images and 1,000 testing images per style. One of 

the key benefits of ArtBench-10 is its class-balanced 

distribution, which addresses the long-tail class 

distributions commonly found in previous artwork 

datasets. Each sample in the Artbench-10 dataset is an 

image of a fine art piece. The dataset offers images of 

high quality with clean annotations and is provided in 

three versions with different resolutions (32 x 32, 256 x 

256, and original image size), formatted to be easily 

incorporated by popular machine learning frameworks. 

The images are in JPEG format, and each sample is 

associated with a set of labels given in a .csv metadata 

file, including the artist’s name, title, year of creation (if 

available), and art movement. An example of this 

image/label annotation is as such: 

 

 
 
Image: "The Persistence of Time" 

Art style: Surrealism 

Artist: Joseph Cusimano 

Year: 1963 

2.1. Input Visualization 
 

The version of Artbench-10 that I have selected has 

normalized all image dimensions to 256 x 256 pixels as 

well as standardized the bit depth to 24. However, the 

dataset does not contain duplicate photos with different 

colour palettes, which poses a fundamental problem: how 

will the model be trained to apply different colour palettes 

onto images without a training reference set of 2 

differently coloured images? Luckily, this problem was 

answered by the researchers and creators of PaletteNet: 

Image Recolorization with Given Color Palette [1], which 

I have been using as the basis for my model. They 

proposed that to train PaletteNet to transform a source 

image into a desired target image, it is necessary to have a 

corresponding target ground truth image that is a 

differently colored version of the source image. However, 

in most cases, such an image does not exist. This is where 

color augmentation becomes crucial, as it allows us to 

define both the input and output of the network. Color 

augmentation involves modifying the pixel values of an 

image in a particular color space, such as HSV, RGB, or 

LAB, on a channel-by-channel basis. PaletteNet primarily 

uses hue-shift in the HSV color space, although this 

method can cause luminance distortion. 

Because HSV does not distinguish between luminance 

and color characteristics, naive hue-shifting can lead to 

unwanted luminance distortion. To overcome this, the 

PaletteNet researchers have proposed a hue-shift 

algorithm that maintains the original image's luminance 

during color augmentation. 

 
From PaletteNet: Image Recolorization with Given Color 

Palette [1]. 

 

 This technique successfully alters the color concept of 

the image while minimizing luminance distortion. Fixing 

luminance is important because the goal is to change only 

the color concept of the image, not its overall brightness. 

The Assumption is made that the corresponding palette of 

the hue-shifted image is also hue-shifted by the same 

amount as that of the original image. 

I use this luminance-correcting hue-shift method to 

generate ground truth images, as it allows me to generate 

a fully specialized dataset for my task out of any pre-

existing dataset. Below is a comparison of a ground truth 

image/palette vs. the same ground truth image/palette 

with its luminance corrected. Luminance distortion can 

severely disrupt the color balance of hue-shifted photos 

with high saturation, brightness and/or exposure if not 

properly accounted for. 



 

 

 

 

 

 
 

2.2. Main Model Description 
 

The main model I am using is that of “PaletteNet: 

Image Recolorization with Given Color Palette” [1]. The 

model architecture is based on a modified U-Net, a type 

of convolutional neural network commonly used for 

image segmentation and image-to-image translation tasks. 

The model consists of an encoder and a decoder, with 

skip connections between corresponding encoder and 

decoder layers to enable the model to preserve fine details 

during the recolorization process. Afterwards, the model 

is put through an adversarial neural network discriminator 

that assigns image-pixel/palette pairs as either fake (not 

related to the input-palette) or real (related to the input 

palette) to further help the model distinguish luminance 

and semantics within an image. The authors also 

introduce a loss function that combines both perceptual 

and color similarity measures to improve the quality of 

the recolorized images and demonstrate that their model 

outperforms several state-of-the-art image recolorization 

methods in terms of both visual quality and color fidelity. 

 

 
The proposed framework for “PaletteNet: PaletteNet: 

Image Recolorization with Given Color Palette” [1]. 

 

The PaletteNet model proposed in the paper 

"PaletteNet: Image Recolorization with Given Color 

Palette" has several hyperparameters that can affect its 

performance. Here are some of the main/relevant 

hyperparameters of the model: 

1. Learning rate: The learning rate determines the 

step size taken during gradient descent 

optimization. A higher learning rate can result in 

faster convergence but may also cause the 

optimization to oscillate or diverge. The authors 

of PaletteNet used an initial learning rate of 

0.0002. 

2. Batch size: The batch size determines the 

number of samples used in each iteration of 

gradient descent. A larger batch size can result in 

faster convergence but may also require more 

memory and slow down the training process. The 

authors of PaletteNet used a batch size between 8 

and 12 depending on the GPU. 



 

 

3. Number of epochs: The number of epochs 

determines the number of times the entire 

training dataset is passed through the model 

during training. Increasing the number of epochs 

can improve the model's performance but may 

also lead to overfitting. The authors of PaletteNet 

trained their model for 1000 epochs. 

4. Number of filters: The number of filters 

determines the depth of the model and can affect 

its ability to capture complex features. The 

authors of PaletteNet used a modified U-Net 

architecture with 64 filters in the first layer of the 

encoder and decoder, and gradually increasing 

the number of filters in subsequent layers. 

5. Loss function weights: As previously mentioned, 

the authors of PaletteNet used a novel loss 

function that combines both perceptual and color 

similarity measures. The weights assigned to 

each component of the loss function can affect 

the balance between preserving fine details and 

ensuring accurate color representation in the 

recolorized images. 

6. Data augmentation: Data augmentation 

techniques such as random cropping, flipping, 

and rotation can help to increase the size of the 

training dataset and improve the model's ability 

to generalize to new images. The authors of 

PaletteNet used random horizontal flipping as a 

data augmentation technique. 

These hyperparameters were chosen based on empirical 

experimentation and can be adjusted. As such, I have 

changed the way colours are extracted from images, 

opting into a KNN approach as described in my dataset 

plan. I decreased the number of colours in an input palette 

from 6 to 4, being able to experiment with 

increasing/decreasing the batch size to maximum 32 and 

minimum 8. 

 
2.3. Baseline Model Description 

 
 For my baseline model, I am using the approach 

presented in the paper "palette-based photo recoloring" by 

Huiwen Chang et al [2]. The authors propose a technique 

that takes as input an image and a user-defined color 

palette and generates a new image where the colors have 

been replaced with colors from the given palette while 

preserving the overall appearance of the original image. 

The method is based on an optimization framework that 

iteratively updates the colors of the pixels in the image to 

minimize a cost function that measures the difference 

between the new color and the original color.  

The authors evaluate their method on a dataset of 

images and show that it is able to produce visually 

pleasing results that are consistent with the user-provided 

color palette. They also compare their method with other 

standard recoloring techniques and show that it exceeds 

them in terms of both quality and computational 

efficiency. 

 

 
These images were taken from the palette-based photo 

recoloring GitHub page: (https://github.com/b-

z/photo_recoloring). 

 

This model does not have any explicit elements of 

machine learning within its implementation. The method 

is based on an optimization framework where the cost 

function is designed to take into account both the 

perceptual similarity between the original and new colors, 

as well as the overall smoothness of the recolored image. 

While the method does not use any machine learning 

algorithms explicitly, it does incorporate some elements 

that are similar to machine learning techniques. For 

example, the method uses a color difference measure that 

is based on the perceptual similarity of colors, which is 

similar to the idea of using a distance metric in machine 

learning. Additionally, the method uses spatial 

regularization terms to encourage smoothness in the 

recolored image, which is also similar to the idea of using 

regularization in machine learning to avoid overfitting. 

While the paper does not explicitly mention 

hyperparameters, the optimization algorithm has several 

parameters that can affect the performance of the method. 

These parameters include: 

1. The initial color palette: The user provides a set 

of colors that the algorithm uses to recolor the 

image. The choice of colors can greatly impact 

the final result. 

2. The weight of the color difference measure: The 

cost function used in the optimization framework 

involves a color difference measure that weighs 

the difference between the original and recolored 

colors. The weight of this measure can be 

https://github.com/b-z/photo_recoloring
https://github.com/b-z/photo_recoloring


 

 

adjusted to control the balance between color 

fidelity and color variety. 

3. The weight of the spatial regularization term: 

The cost function also includes a term that 

encourages smoothness in the recolored image. 

The weight of this term can be adjusted to 

control the balance between smoothness and 

detail preservation. 

4. The number of iterations: The optimization 

process iteratively updates the colors of the 

pixels in the image to minimize the cost 

function. The number of iterations can be 

adjusted to control the convergence of the 

optimization process and the quality of the final 

result. 

The specific values of these parameters may depend on 

the characteristics of the input image, the chosen color 

palette, and the desired level of color fidelity and 

smoothness in the output image. Since I will be using this 

as my baseline model, this method will serve as an overall 

benchmark against a deep learning model that utilizes 

semantic recognition and preservation, as well as 

luminance preservation and colour diffusion techniques to 

better translate the input palette onto the image in 

question. I decreased the size of the input palette of this 

approach from 5 to 4.  

 

2.4. Training Plan and Evaluation Metric 
 

For my main model, I initialized the model using the 

He initialization method for the convolutional layers and 

the Glorot initialization method for the fully connected 

layers. The PaletteNet authors use a combination of two 

regularization schemes: L2 weight regularization and 

dropout, which I did not modify at this given time. The 

training algorithm I will use is the Adam optimization 

algorithm. The authors of PaletteNet also use a learning 

rate scheduler that decreases the learning rate during 

training to help the model converge more smoothly and 

avoid getting stuck in local minima. Specifically, they use 

a step decay scheduler that reduces the learning rate by a 

factor of 10 after a certain number of epochs. This helps 

to improve the stability and generalization performance of 

the model.  

I used a CUDA-enabled implementation of PyTorch on 

an x64 Windows distribution to train this model. During 

training, the model was trained on the training set and its 

performance is evaluated on the self-created validation set 

at the end of a 100-epoch training session. The 

performance metric used for evaluation is the mean 

squared error (MSE) between the predicted and ground-

truth palettes for each image in the validation set. 

Since the baseline model is not a deep learning model, 

there will be no training plan required for it. An 

alternative evaluation metric that I am researching to 

compare my baseline and main models is the Structural 

Similarity Index (SSIM). 

The SSIM is a widely used metric for evaluating the 

similarity between two images, which takes into account 

both their luminance and structural information. The 

SSIM index ranges from -1 to 1, where 1 indicates perfect 

similarity between the two images, 0 indicates no 

similarity, and -1 indicates complete dissimilarity. 

To compute the SSIM between the predicted and 

ground-truth images for a given input image, the 

predicted and ground-truth images are first converted 

from the LAB color space to the RGB color space. Then, 

the SSIM is computed over the luminance and 

chrominance channels of the images. 

Using the SSIM as an alternative evaluation metric in 

addition to the MSE can provide a more comprehensive 

evaluation of the model's performance. While the MSE 

measures the pixel-wise difference between the predicted 

and ground-truth color palettes, the SSIM measures the 

perceptual similarity between the predicted and ground-

truth images, taking into account factors such as 

brightness, contrast, and structure. 

 

3. Results 
 

After realizing that training my model for 1000 epochs 

was somewhat overambitious, I trained the modified 4-

color model on the testing set for 100 epochs on feature 

encoder/ recoloring decoder and a separate 100 epochs on 

the adversarial discriminator. Overall, it took between 10-

15 minutes per epoch, resulting in an overall training 

session of just under 2 days. While this was somewhat 

lengthy, the average epoch time on the training set was 

around 3.5 hours, and as such, I could not feasibly 

complete 100 epochs on my home setup. I spent 2 days 

transferring my models and dataset into tux storage, and 

the GPU farm/ Blacktip netbook servers were giving me 

similar times per epoch. I tried changing batch size and 

learning rate, but to no avail. After I realized that the tux 

netbook servers could not reasonably handle this task 

either, I decided to focus my tests specifically on the test 

set, and by doing so I was able to obtain some very 

interesting results. 

To preface, the baseline model did not need any 

training, as it is not a deep learning/ machine learning 

model. With my main model being a modified version of 

palettenet, it required double the training time, as I needed 

to train the encoder/decoder as well as adversarial neural 

network/discriminator. I noticed that my total loss was 

quite high while training the discriminator and would 

slowly whittle down per epoch. By the time 100 epochs 

were met, it still had a total loss value over 200, and 

created very interesting images but was ultimately 

unsuccessful at the task at hand. Continuing onward, I 

realized that my ablated model which only went through 



 

 

encoder/decoder training was performing quite well. This 

will be later visited in the ablation study.  

Overall, this main model created through the test set 

creates reduced, pleasing and nearly semantically 

identical photos, even with an outrageous color palette. 

Because of PaletteNet’s training, it can introduce colors in 

a much more subdued fashion than the naïve color 

algorithm. By using a SSIM tool created by Nathancy 

(more info under acknowledgements on GitLab) I was 

able to quickly analyze the structure of the original photo 

against the newly created photo. Using the same palette 

for both models (orange, brown, purple, green), the SSIM 

tool reported that the Image similarity score was 

0.936519987490214 (Figure 1), which is quite good when 

compared to SSIM value of the naïve algorithm, which 

produced an Image similarity score of 

0.48873317084460277 (Figure 2). 

  

 
Figure 1: Original image vs. Main Model Image. 

 

 
Figure 2: Original image vs Baseline Model Image. 

3.1. Hyper Parameter Experiment 

 

 After the initial training session, I knew I needed to 

tune hyperparameters to minimize my total loss, 

especially after seeing the loss on the adversarial network. 

To achieve that, I modified my main model to use 

TensorBoard to track scalars such as loss, as well as the 

weights/biases of convolutional layers. To come up with 

an optimal configuration, I changed the learning rate, 

batch size, and image shuffle configurations values into 

dynamic values, having 2 different learning rates (0.01, 

0.0002), 2 different shuffle states (on and off) and 3 

different batch sizes (8, 16, and 32), which gave me 12 

different total combinations of hyper parameters. Using 

my new TensorBoard setup, I ran each hyper parameter 

combination for 5 epochs, and tracked the loss at the end 

of each run. Figure 3 visually demonstrates all 

combinations final loss after their respective runs, and 

Figure 4 contains the raw data on how well each 

combination of hyper parameters performed regarding 

minimizing loss. 

 

 
Figure 3: TensorBoard Visualization of all 12 runs total 

loss. The data for these runs are available on GitLab. 

 
Figure 4: Raw data on each hyper parameter run. lr = 

0.0002, bsize = 8, shuffle = 0 had the lowest total loss.  



 

 

All these hyper parameters generally affected loss rate, 

with shuffle-on consistently raising the loss of its non-

shuffled counterpart, and higher batch sizes/ learning rates 

generally resulting in an increased total loss value. lr = 

0.0002, bsize = 8, shuffle = 0 had the lowest total loss, 

and lr = 0.01, bsize = 16, shuffle = 1 had the highest total 

loss. Higher batch sizes/and learning rates consistently 

finished faster than lower sizes/rates but lack the fine-

grained precision that lower/sizes/rates provide to the 

models weights/biases. 

 

3.2. Ablation Study 

 

 In the original PaletteNet paper, the training plan for 

the model involved two phases: Pretraining Feature 

Encoder (FE) and Recoloring Decoder (RD) with 

Euclidean loss, Freezing the parameters of FE and 

training RD with additional Adv-loss. This split training 

stabilizes the learning of the recolorization process with 

Adv-loss (Figure 5). For the ablation study, I decided to 

save my model both after the encoder/decoder training 

and after the adversarial training, resulting in two separate 

models, one with and one without adversarial training/ 

concatenation. 

 

 
Figure 5: the original training plan for PaletteNet Model. 

 

 I chose to cut out all adversarial training as my ablated 

model because, interestingly enough, my original model 

that included the adversarial loss performed worse in 

terms of adversarial total loss versus Euclidean total loss 

and worse on the SSIM tests than my ablated model 

which only trained 100 epochs on FE/RD. Figure 6 shows 

the SSIM tests of the original image versus the adversarial 

model image generation, on which it scored an image 

similarity of 0.6427447836424582, much less than the 

ablated model’s score of 0.936519987490214 in figure 1, 

although these results were still better than that of the 

photo recoloring baseline model. 

 
Figure 6: Original image vs non-ablated model. 

 

Originally, I was unsure if the ablated model would 

perform well at all, as I initially began my image testing 

with the full model, but as once I realized that the ablated 

model gave better results, I switched all my testing to that 

model. The main reason I believe the non-ablated model 

performs worse is due to FE/RD being trained on less 

data/epochs than the original PaletteNet-documented 

model, thus when those weights/parameters are frozen to 

train the adversarial network, it has less of a tuned model 

to as its foundation, and then only gets trained for a 

fraction of what the team behind PaletteNet trained their 

model on.  

 

4. Discussion 

 

 Because this task is focused on deep learning for 

creative domains, subjective measures such as image 

appeal, style, and quality are just as important as objective 

measures such as performance and task efficacy, which 

has led to some unusual but welcome discoveries. My 

fully trained adversarial model produces images that are 

trying to discriminate each image-pixel/palette pair as real 

or fake, which results in a sort of distortion between the 

input palette and the original color palette. This was an 

unintended effect, but nevertheless generates a new 

stylistic rendition of an image. Had more time been put 

into training both the FE/RD and the adversarial models, I 

believe that this issue would have been solved, or at the 

very least somewhat alleviated. Upon showing some 

colleagues the faulty model, they preferred the images 



 

 

that it generated over the images generated from the more 

accurate ablated test model. This shows that, as with all 

art, preference plays a huge role on the actual level of 

appeal that an artistic product can have, and as such, 

mistakes in artistic models can lead to some novel uses 

and applications of deep learning models.  

 

5. Conclusion 

 

 In conclusion, deep neural image recolorization and 

palette-swapping is a powerful technique that has 

immense potential for improving image quality and 

generating new images with different styles and moods. 

The modified version of PaletteNet proposed in this paper 

is an excellent example of the adaptability of this 

technique for artistic purposes. The model successfully 

created reductive images via the 4-color palette training 

that maintain semantic integrity. The study compared and 

demonstrated the superiority of the proposed model 

against a more naïve color transfer algorithm and 

demonstrated that through ablation, hyperparameter 

tuning, and general training mistakes, it was still possible 

to create a model with artistic worth, even if that model 

does not do what it was originally intended to do.  
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